Search results for "Existence theorem"

showing 10 items of 15 documents

Sur les problèmes d'optimisation structurelle

2000

We discuss existence theorems for shape optimization and material distribution problems. The conditions that we impose on the unknown sets are continuity of the boundary, respectively a certain measurability hypothesis. peerReviewed

Dirichlet problemCharacteristic function (probability theory)CalculusNeumann boundary conditionApplied mathematicsExistence theoremBoundary (topology)Shape optimizationGeneral MedicineBoundary value problemOptimal controlMathematics
researchProduct

Zur Existenz von Lösungen gewisser Randwertaufgaben

1971

With the aid of some known results about integral equations of the Hammerstein type there is proofed an existence theorem for the following class of boundary value problems−y″−l 2 y′=f(x,y),y(a)=y(b)=0,l 2>0 mit|f(x, y)|=0,l 3 (x)>0. The existence range is determined by the greatest eigenvalue of some linear problem.

CombinatoricsApplied MathematicsGeneral MathematicsMathematical analysisLinear problemGeneral Physics and AstronomyExistence theoremIntegral equationBoundary valuesEigenvalues and eigenvectorsMathematicsZeitschrift für angewandte Mathematik und Physik ZAMP
researchProduct

Krasnosel'skiĭ-Schaefer type method in the existence problems

2019

We consider a general integral equation satisfying algebraic conditions in a Banach space. Using Krasnosel'skii-Schaefer type method and technical assumptions, we prove an existence theorem producing a periodic solution of some nonlinear integral equation.

Pure mathematicsCompact operatorApplied MathematicsBanach spaceExistence theoremType (model theory)Nonlinear integral equationNonlinear integral equationCompact operatorIntegral equationSettore MAT/05 - Analisi MatematicaF contractionAlgebraic numberF-contractionAnalysisKrasnosel’skiĭ-schaefer fixed point theoremMathematics
researchProduct

Minimizing total variation flow

2000

We prove existence and uniqueness of weak solutions for the minimizing total variation flow with initial data in $L^1$. We prove that the length of the level sets of the solution, i.e., the boundaries of the level sets, decreases with time, as one would expect, and the solution converges to the spatial average of the initial datum as $t \to \infty$. We also prove that local maxima strictly decrease with time; in particular, flat zones immediately decrease their level. We display some numerical experiments illustrating these facts.

Dirichlet problem35K90Partial differential equationMeasurable functionApplied MathematicsMathematical analysis35B40Existence theorem35K65General Medicine35D0535K60Maxima and minimaUniqueness theorem for Poisson's equation35K55Neumann boundary conditionUniquenessAnalysisMathematics
researchProduct

The forgotten mathematical legacy of Peano

2019

International audience; The formulations that Peano gave to many mathematical notions at the end of the 19th century were so perfect and modern that they have become standard today. A formal language of logic that he created, enabled him to perceive mathematics with great precision and depth. He described mathematics axiomatically basing the reasoning exclusively on logical and set-theoretical primitive terms and properties, which was revolutionary at that time. Yet, numerous Peano’s contributions remain either unremembered or underestimated.

PeanoPeano's axioms of arithmeticPeano's counterexamplesWeierstrass maximum theoremabstract measuresGeneral MathematicsClosure (topology)tangencyinterioranti-distributive familiesfoundationdefinitions by abstractionlinear differential equationsaxiom of choiceLogical conjunctionPeano axiomsproofFormal languageAxiom of choiceMSC: Primary 01A55 01A6003-03 26-03 28-03 34-03 54-03; Secondary15A75 26A03 26A2426B25 26B05 28A1228A15 28A75.affine exterior algebra[MATH]Mathematics [math]reduction formulaeMathematicsnonlinear differential equationsoptimality conditionsdifferentiation of measuressweeping-tangent theoremPeano's axioms of geometryPeano's filling curvereduction of mathematics to setssurface areaclosuremean value theoremDirichlet functionNonlinear differential equationssubtangentsEpistemologymeasure theoryplanar measurelower and upper limits of setsdistributive familiescompactnessmathematical definitions1886 existence theoremdifferentiabilityDissertationes Mathematicae
researchProduct

On the structure of the set of solutions of nonlinear equations

1971

Let T be a mapping from a subset of a Banach space X into a Banach space Y. The present paper investigates the nature of the set of solutions of the equation T(x) = y for a given y E Y, i.e. when T-l(y) # 0 ? What are the topological properties of T-l(y)? A prototype for an answer to these questions is given by Peano existence theorem on the connectedness of the set of solutions of an ordinary differential equation in the real case. In its general setting, this problem was first attacked by Aronszajn [l] and Stampacchia [l 11; recently, by Browder-Gupta [5], Vidossich [12] and, above all, Browder [3, Sec. 51 who gives several interesting results in an excellent treatment. Customary, the str…

Pure mathematicsIndependent equationApplied MathematicsProper mapOrdinary differential equationBanach spaceExistence theoremOpen and closed mapsAnalysisDomain (mathematical analysis)MathematicsPeano existence theoremJournal of Mathematical Analysis and Applications
researchProduct

Global fixed point proof of time-dependent density-functional theory

2011

We reformulate and generalize the uniqueness and existence proofs of time-dependent density-functional theory. The central idea is to restate the fundamental one-to-one correspondence between densities and potentials as a global fixed point question for potentials on a given time-interval. We show that the unique fixed point, i.e. the unique potential generating a given density, is reached as the limiting point of an iterative procedure. The one-to-one correspondence between densities and potentials is a straightforward result provided that the response function of the divergence of the internal forces is bounded. The existence, i.e. the v-representability of a density, can be proven as wel…

Pure mathematicsCondensed Matter - Materials ScienceQuantum PhysicsAtomic Physics (physics.atom-ph)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyExistence theorem02 engineering and technologyFunction (mathematics)Fixed point021001 nanoscience & nanotechnologyMathematical proof01 natural sciencesUpper and lower boundsPhysics - Atomic PhysicsUniqueness theorem for Poisson's equationBounded function0103 physical sciencesUniquenessQuantum Physics (quant-ph)010306 general physics0210 nano-technologyMathematics
researchProduct

Best proximity points for cyclic Meir–Keeler contractions

2008

Abstract We introduce a notion of cyclic Meir–Keeler contractions and prove a theorem which assures the existence and uniqueness of a best proximity point for cyclic Meir–Keeler contractions. This theorem is a generalization of a recent result due to Eldred and Veeramani.

Pure mathematicsGeneralizationApplied MathematicsBest proximity pointMathematics::General TopologyExistence theoremCyclic contractionCyclic Meir–Keeler contractionProximal contractionCyclic contractionSettore MAT/05 - Analisi MatematicaCalculusPoint (geometry)UniquenessAnalysisMathematics
researchProduct

Quasi-conformal mapping theorem and bifurcations

1998

LetH be a germ of holomorphic diffeomorphism at 0 ∈ ℂ. Using the existence theorem for quasi-conformal mappings, it is possible to prove that there exists a multivalued germS at 0, such thatS(ze 2πi )=H○S(z) (1). IfH λ is an unfolding of diffeomorphisms depending on λ ∈ (ℂ,0), withH 0=Id, one introduces its ideal $$\mathcal{I}_H$$ . It is the ideal generated by the germs of coefficients (a i (λ), 0) at 0 ∈ ℂ k , whereH λ(z)−z=Σa i (λ)z i . Then one can find a parameter solutionS λ (z) of (1) which has at each pointz 0 belonging to the domain of definition ofS 0, an expansion in seriesS λ(z)=z+Σb i (λ)(z−z 0) i with $$(b_i ,0) \in \mathcal{I}_H$$ , for alli. This result may be applied to the…

Discrete mathematicsPure mathematicsGeneral MathematicsSaddle pointTransversal (combinatorics)Holomorphic functionExistence theoremVector fieldIdeal (ring theory)Connection (algebraic framework)SaddleMathematicsBoletim da Sociedade Brasileira de Matem�tica
researchProduct

Optimal shape design and unilateral boundary value problems: Part II

2007

In the first part we give a general existence theorem and a regularization method for an optimal control problem where the control is a domain in R″ and where the system is governed by a state relation which includes differential equations as well as inequalities. In the second part applications for optimal shape design problems governed by the Dirichlet-Signorini boundary value problem are presented. Several numerical examples are included.

Dirichlet problemMathematical optimizationControl and OptimizationPartial differential equationDifferential equationApplied MathematicsExistence theoremOptimal controlFinite element methodControl and Systems EngineeringVariational inequalityApplied mathematicsBoundary value problemSoftwareMathematicsOptimal Control Applications and Methods
researchProduct