Search results for "Existence theorem"
showing 10 items of 15 documents
Sur les problèmes d'optimisation structurelle
2000
We discuss existence theorems for shape optimization and material distribution problems. The conditions that we impose on the unknown sets are continuity of the boundary, respectively a certain measurability hypothesis. peerReviewed
Zur Existenz von Lösungen gewisser Randwertaufgaben
1971
With the aid of some known results about integral equations of the Hammerstein type there is proofed an existence theorem for the following class of boundary value problems−y″−l 2 y′=f(x,y),y(a)=y(b)=0,l 2>0 mit|f(x, y)|=0,l 3 (x)>0. The existence range is determined by the greatest eigenvalue of some linear problem.
Krasnosel'skiĭ-Schaefer type method in the existence problems
2019
We consider a general integral equation satisfying algebraic conditions in a Banach space. Using Krasnosel'skii-Schaefer type method and technical assumptions, we prove an existence theorem producing a periodic solution of some nonlinear integral equation.
Minimizing total variation flow
2000
We prove existence and uniqueness of weak solutions for the minimizing total variation flow with initial data in $L^1$. We prove that the length of the level sets of the solution, i.e., the boundaries of the level sets, decreases with time, as one would expect, and the solution converges to the spatial average of the initial datum as $t \to \infty$. We also prove that local maxima strictly decrease with time; in particular, flat zones immediately decrease their level. We display some numerical experiments illustrating these facts.
The forgotten mathematical legacy of Peano
2019
International audience; The formulations that Peano gave to many mathematical notions at the end of the 19th century were so perfect and modern that they have become standard today. A formal language of logic that he created, enabled him to perceive mathematics with great precision and depth. He described mathematics axiomatically basing the reasoning exclusively on logical and set-theoretical primitive terms and properties, which was revolutionary at that time. Yet, numerous Peano’s contributions remain either unremembered or underestimated.
On the structure of the set of solutions of nonlinear equations
1971
Let T be a mapping from a subset of a Banach space X into a Banach space Y. The present paper investigates the nature of the set of solutions of the equation T(x) = y for a given y E Y, i.e. when T-l(y) # 0 ? What are the topological properties of T-l(y)? A prototype for an answer to these questions is given by Peano existence theorem on the connectedness of the set of solutions of an ordinary differential equation in the real case. In its general setting, this problem was first attacked by Aronszajn [l] and Stampacchia [l 11; recently, by Browder-Gupta [5], Vidossich [12] and, above all, Browder [3, Sec. 51 who gives several interesting results in an excellent treatment. Customary, the str…
Global fixed point proof of time-dependent density-functional theory
2011
We reformulate and generalize the uniqueness and existence proofs of time-dependent density-functional theory. The central idea is to restate the fundamental one-to-one correspondence between densities and potentials as a global fixed point question for potentials on a given time-interval. We show that the unique fixed point, i.e. the unique potential generating a given density, is reached as the limiting point of an iterative procedure. The one-to-one correspondence between densities and potentials is a straightforward result provided that the response function of the divergence of the internal forces is bounded. The existence, i.e. the v-representability of a density, can be proven as wel…
Best proximity points for cyclic Meir–Keeler contractions
2008
Abstract We introduce a notion of cyclic Meir–Keeler contractions and prove a theorem which assures the existence and uniqueness of a best proximity point for cyclic Meir–Keeler contractions. This theorem is a generalization of a recent result due to Eldred and Veeramani.
Quasi-conformal mapping theorem and bifurcations
1998
LetH be a germ of holomorphic diffeomorphism at 0 ∈ ℂ. Using the existence theorem for quasi-conformal mappings, it is possible to prove that there exists a multivalued germS at 0, such thatS(ze 2πi )=H○S(z) (1). IfH λ is an unfolding of diffeomorphisms depending on λ ∈ (ℂ,0), withH 0=Id, one introduces its ideal $$\mathcal{I}_H$$ . It is the ideal generated by the germs of coefficients (a i (λ), 0) at 0 ∈ ℂ k , whereH λ(z)−z=Σa i (λ)z i . Then one can find a parameter solutionS λ (z) of (1) which has at each pointz 0 belonging to the domain of definition ofS 0, an expansion in seriesS λ(z)=z+Σb i (λ)(z−z 0) i with $$(b_i ,0) \in \mathcal{I}_H$$ , for alli. This result may be applied to the…
Optimal shape design and unilateral boundary value problems: Part II
2007
In the first part we give a general existence theorem and a regularization method for an optimal control problem where the control is a domain in R″ and where the system is governed by a state relation which includes differential equations as well as inequalities. In the second part applications for optimal shape design problems governed by the Dirichlet-Signorini boundary value problem are presented. Several numerical examples are included.